Skip to contents

Given a sample covariance matrix \(S\) and a group of variables \(P\), first computes the cross-covariance matrix between the whitened variables: \(S_{P, P^c}^W = S_{P, P}^{-0.5} S_{P, P^c} S_{P^c, P^c}^{-0.5}\). Next, computes the SVD of \(S_{P, P^c}^W\) and returns the test statistic, \(S_{P, P}\), \(S_{P^c, P^c}\) and the canonical vectors of \(S_{P, P^c}\).

Usage

test_stat_CCA(S, CP, k)

Arguments

S

a \(p \times p\) sample covariance matrix

CP

a vector of length \(p\) with \(i^{th}\) element denoting the group \(i^{th}\) variable belongs to

k

the group to be tested for independence with the remaining variables, i.e. \(P = i : CP[i]==k\)

Value

A list containing the following items:

statistic

Test statistic corresponding to \(S\) and group of variables \(P\).

S11

\(S_{P, P}\) if \(2|P| \ge p\), else \(S_{P^c, P^c}\).

S22

\(S_{P^c, P^c}\) if \(2|P| \ge p\), else \(S_{P, P}\).

left_SV

Left canonical vectors of \(S_{P, P^c}\).

right_SV

Right canonical vectors of \(S_{P, P^c}\).